Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
1.
Enzyme Microb Technol ; 165: 110211, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36804179

RESUMO

Cytidine 5'-monophosphate (5'-CMP), a key intermediate for the production of nucleotide derivatives, has been extensively used in food, agriculture, and medicine industries. Compared to RNA degradation and chemical synthesis, the biosynthesis of 5'-CMP has attracted wide attention due to its relatively low cost and eco-friendliness. In this study, we developed a cell-free regeneration of ATP based on polyphosphate kinase 2 (PPK2) to manufacture 5'-CMP from cytidine (CR). McPPK2 from Meiothermus cerbereus exhibited high specific activity (128.5 U/mg) and was used to accomplish ATP regeneration. McPPK2 and LhUCK (a uridine-cytidine kinase from Lactobacillus helveticus) were combined to convert CR to 5'-CMP. Further, the degradation of CR was inhibited by knocking out cdd from the Escherichia coli genome to enhance 5'-CMP production. Finally, the cell-free system based on ATP regeneration maximized the titer of 5'-CMP up to 143.5 mM. The wider applicability of this cell-free system was demonstrated in the synthesis of deoxycytidine 5'-monophosphate (5'-dCMP) from deoxycytidine (dCR) by incorporating McPPK2 and BsdCK (a deoxycytidine kinase from Bacillus subtilis). This study suggests that the cell-free regeneration of ATP based on PPK2 has the advantage of great flexibility for producing 5'-(d)CMP and other (deoxy)nucleotides.


Assuntos
Monofosfato de Citidina , Núcleosídeo-Fosfato Quinase , Monofosfato de Citidina/química , Monofosfato de Citidina/metabolismo , Núcleosídeo-Fosfato Quinase/química , Núcleosídeo-Fosfato Quinase/genética , Núcleosídeo-Fosfato Quinase/metabolismo , Nucleotídeos , Citidina/metabolismo , Desoxicitidina/metabolismo , Trifosfato de Adenosina , Regeneração
2.
Artigo em Inglês | MEDLINE | ID: mdl-34994281

RESUMO

Thymidylate kinase (TMPK) phosphorylates deoxythymidine monophosphate (dTMP) and plays an important role in genome stability. Deficiency in TMPK activity due to genetic alterations of DTYMK, i.e., the gene coding for TMPK, causes severe microcephaly in humans. However, no defects were observed in other tissues, suggesting the existence of a compensatory enzyme for dTTP synthesis. In search for this compensatory enzyme we analyzed 6 isoforms of TMPK mRNA deposited in the GenBank. Of these, only isoform 1 has been characterized and represents the known human TMPK. Our results reveal that isoform 2, 3, 4 and 5 lack essential structural elements for substrate binding and, thus, they are considered as nonfunctional isoforms. Isoform 6, however, has intact catalytic centers, i.e., dTMP-binding, DRX motif, ATP-binding p-loop and lid region, which are the key structural elements of an active TMPK, suggesting that isoform 6 may function as TMPK. When isoform 6 was expressed and purified, it showed only minimal activity (<0.1%) as compared with isoform 1. A putative isoform 6 was detected in a cancer cell line, in addition to the dominant isoform 1. However, because of its low activity, isoform 6 is unlikely be able to compensate for the loss of TMPK activity caused by deletions and/or point mutations of the DTYMK gene. Thereby, future studies to identify and characterize the compensatory TMPK enzyme found in patients with DTYMK mutations may contribute to the understanding of dTTP synthesis and of the pathophysiological role of DTYMK mutations in neurodegenerative disorders.


Assuntos
Núcleosídeo-Fosfato Quinase , Catálise , Humanos , Núcleosídeo-Fosfato Quinase/química , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
3.
Commun Biol ; 4(1): 724, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117354

RESUMO

SARS-CoV-2 infection leads to coronavirus disease 2019 (COVID-19), which is associated with severe and life-threatening pneumonia and respiratory failure. However, the molecular basis of these symptoms remains unclear. SARS-CoV-1 E protein interferes with control of cell polarity and cell-cell junction integrity in human epithelial cells by binding to the PALS1 PDZ domain, a key component of the Crumbs polarity complex. We show that C-terminal PDZ binding motifs of SARS-CoV-1 and SARS-CoV-2 E proteins bind the PALS1 PDZ domain with 29.6 and 22.8 µM affinity, whereas the related sequence from MERS-CoV did not bind. We then determined crystal structures of PALS1 PDZ domain bound to both SARS-CoV-1 and SARS-CoV-2 E protein PDZ binding motifs. Our findings establish the structural basis for SARS-CoV-1/2 mediated subversion of Crumbs polarity signalling and serve as a platform for the development of small molecule inhibitors to suppress SARS-CoV-1/2 mediated disruption of polarity signalling in epithelial cells.


Assuntos
Proteínas do Envelope de Coronavírus/química , Proteínas do Envelope de Coronavírus/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Núcleosídeo-Fosfato Quinase/química , Núcleosídeo-Fosfato Quinase/metabolismo , Domínios PDZ , Sequência de Aminoácidos , Humanos , Modelos Moleculares , Ligação Proteica
4.
Microbes Infect ; 22(10): 592-597, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32891874

RESUMO

The Envelope (E) protein of SARS-CoV-2 is the most enigmatic protein among the four structural ones. Most of its current knowledge is based on the direct comparison to the SARS E protein, initially mistakenly undervalued and subsequently proved to be a key factor in the ER-Golgi localization and in tight junction disruption. We compared the genomic sequences of E protein of SARS-CoV-2, SARS-CoV and the closely related genomes of bats and pangolins obtained from the GISAID and GenBank databases. When compared to the known SARS E protein, we observed a significant difference in amino acid sequence in the C-terminal end of SARS-CoV-2 E protein. Subsequently, in silico modelling analyses of E proteins conformation and docking provide evidences of a strengthened binding of SARS-CoV-2 E protein with the tight junction-associated PALS1 protein. Based on our computational evidences and on data related to SARS-CoV, we believe that SARS-CoV-2 E protein interferes more stably with PALS1 leading to an enhanced epithelial barrier disruption, amplifying the inflammatory processes, and promoting tissue remodelling. These findings raise a warning on the underestimated role of the E protein in the pathogenic mechanism and open the route to detailed experimental investigations.


Assuntos
COVID-19/metabolismo , Proteínas de Membrana/química , Núcleosídeo-Fosfato Quinase/química , SARS-CoV-2/química , Junções Íntimas/química , Proteínas do Envelope Viral/química , Sequência de Aminoácidos , Animais , COVID-19/genética , Quirópteros/virologia , Bases de Dados Genéticas , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Simulação de Dinâmica Molecular , Núcleosídeo-Fosfato Quinase/genética , Núcleosídeo-Fosfato Quinase/metabolismo , Pangolins/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Junções Íntimas/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
5.
Protein Sci ; 29(10): 2038-2042, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32822073

RESUMO

The Envelope protein (E) is one of the four structural proteins encoded by the genome of SARS-CoV and SARS-CoV-2 Coronaviruses. It is an integral membrane protein, highly expressed in the host cell, which is known to have an important role in Coronaviruses maturation, assembly and virulence. The E protein presents a PDZ-binding motif at its C-terminus. One of the key interactors of the E protein in the intracellular environment is the PDZ containing protein PALS1. This interaction is known to play a key role in the SARS-CoV pathology and suspected to affect the integrity of the lung epithelia. In this paper we measured and compared the affinity of peptides mimicking the E protein from SARS-CoV and SARS-CoV-2 for the PDZ domain of PALS1, through equilibrium and kinetic binding experiments. Our results support the hypothesis that the increased virulence of SARS-CoV-2 compared to SARS-CoV may rely on the increased affinity of its Envelope protein for PALS1.


Assuntos
Betacoronavirus/metabolismo , Infecções por Coronavirus/metabolismo , Proteínas de Membrana/metabolismo , Núcleosídeo-Fosfato Quinase/metabolismo , Pneumonia Viral/metabolismo , Síndrome Respiratória Aguda Grave/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Betacoronavirus/química , Sítios de Ligação , COVID-19 , Proteínas do Envelope de Coronavírus , Infecções por Coronavirus/virologia , Humanos , Proteínas de Membrana/química , Modelos Moleculares , Núcleosídeo-Fosfato Quinase/química , Domínios PDZ , Pandemias , Peptídeos/química , Peptídeos/metabolismo , Pneumonia Viral/virologia , Ligação Proteica , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/virologia , Proteínas do Envelope Viral/química
6.
Bioorg Med Chem Lett ; 30(17): 127368, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738986

RESUMO

1,2,4-Triazole is a very important scaffold in medicinal chemistry due to the wide spectrum of biological activities and mainly antifungal activity of 1,2,4-triazole derivatives. The main mechanism of antifungal action of the latter is inhibition of 14-alpha-demethylase enzyme (CYP51). The current study presents synthesis and evaluation of eight triazole derivatives for their antimicrobial activity. Docking studies to elucidate the mechanism of action were also performed. The designed compounds were synthesized using classical methods of organic synthesis. The in vivo evaluation of antimicrobial activity was performed by microdilution method. All tested compounds showed good antibacterial activity with MIC and MBC values ranging from 0.0002 to 0.0069 mM. Compound 2 h appeared to be the most active among all tested with MIC at 0.0002-0.0033 mM and MBC at 0.0004-0.0033 mM followed by compounds 2f and 2g. The most sensitive bacterium appeared to be Xanthomonas campestris while Erwinia amylovora was the most resistant. The evaluation of antifungal activity revealed that all compounds showed good antifungal activity with MIC values ranging from 0.02 mM to 0.52 mM and MFC from 0.03 mM to 0.52 mM better than reference drugs ketoconazole (MIC and MFC values at 0.28-1.88 mM and 0.38 mM to 2.82 mM respectively) and bifonazole (MIC and MFC values at 0.32-0.64 mM and 0.64-0.81 mM). The best antifungal activity is displayed by compound 2 h with MIC at 0.02-0.04 mM and MFC at 0.03-0.06 mM while compound 2a showed the lowest activity. The results showed that these compounds could be lead compounds in search for new potent antimicrobial agents. Docking studies confirmed experimental results.


Assuntos
Anti-Infecciosos/síntese química , Triazóis/química , Antibacterianos/síntese química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Sítios de Ligação , DNA Girase/química , DNA Girase/metabolismo , Desenho de Fármacos , Erwinia amylovora/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Fungos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Núcleosídeo-Fosfato Quinase/química , Núcleosídeo-Fosfato Quinase/metabolismo , Relação Estrutura-Atividade , Triazóis/metabolismo , Triazóis/farmacologia , Xanthomonas campestris/efeitos dos fármacos
7.
Eur J Med Chem ; 201: 112450, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32623208

RESUMO

Mycobacterium tuberculosis, the causative agent of tuberculosis, relies on thymidylate kinase (MtbTMPK) for the synthesis of thymidine triphosphates and thus also DNA synthesis. Therefore, this enzyme constitutes a potential Achilles heel of the pathogen. Based on a previously reported MtbTMPK 6-aryl-substituted pyridone inhibitor and guided by two co-crystal structures of MtbTMPK with pyridone- and thymine-based inhibitors, we report the synthesis of a series of aryl-shifted cyanopyridone analogues. These compounds generally lacked significant MtbTMPK inhibitory potency, but some analogues did exhibit promising antitubercular activity. Analogue 11i demonstrated a 10-fold increased antitubercular activity (MIC H37Rv, 1.2 µM) compared to literature compound 5. Many analogues with whole-cell antimycobacterial activity were devoid of significant cytotoxicity.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Nitrilas/farmacologia , Núcleosídeo-Fosfato Quinase/antagonistas & inibidores , Piridonas/farmacologia , Antituberculosos/síntese química , Antituberculosos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Nitrilas/síntese química , Nitrilas/metabolismo , Núcleosídeo-Fosfato Quinase/química , Núcleosídeo-Fosfato Quinase/metabolismo , Ligação Proteica , Piridonas/síntese química , Piridonas/metabolismo , Relação Estrutura-Atividade
8.
PLoS One ; 15(5): e0233689, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32469932

RESUMO

Nucleoside monophosphate kinases play crucial roles in biosynthesis and regeneration of nucleotides. These are bi-substrate enzymes that catalyze reversible transfers of a phosphoryl group between ATP and nucleoside monophosphate. These enzymes are comprised of the CORE domain, the NMP-binding domain, and the LID domain. Large conformational rearrangement of the three domains occurs during the catalytic cycle. Although many structures of CMP kinase have been determined, only limited structural information has been available on the conformational changes along the reaction pathway. We determined five crystal structures of CMP kinase of Thermus thermophilus HB8 in ligand-free form and the CMP "open", CMP "closed", ADP-CDP-Gd3+-, and CDP-bound forms at resolutions of 1.7, 2.2, 1.5, 1.6, and 1.7 Å, respectively. The ligand-free form was in an open conformation, whereas the structures of the CMP "closed", ADP-CDP-Gd3+-, and CDP-bound forms were in a closed conformation, in which the shift of the NMP-binding domain and LID domain caused closure of the substrate-binding cleft. Interestingly, the CMP "open" form was in an open conformation even with CMP bound, implying intrinsic conformational fluctuation. The structure of the ADP-CDP complex is the first structure of CMP kinase with a phosphoryl group donor and an acceptor. Upon simultaneous binding of ADP and CDP, the side chains of several residues in the LID domain moved toward the nucleotides without global open-closed conformational changes compared to those in the CMP "closed" and CDP complexes. These global and local conformational changes may be crucial for the substrate recognition and catalysis. The terminal phosphate groups of ADP and CDP had similar geometry to those of two ADP in AMP kinase, suggesting common catalytic mechanisms to other nucleoside monophosphate kinases. Our findings are expected to contribute to detailed understanding of the reaction mechanism of CMP kinase.


Assuntos
Proteínas de Bactérias/química , Núcleosídeo-Fosfato Quinase/química , Thermus thermophilus/enzimologia , Difosfato de Adenosina/química , Cristalografia por Raios X , Cistina Difosfato/química , Domínios Proteicos
9.
Biochemistry ; 59(5): 694-703, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31934749

RESUMO

Plasmodium falciparum thymidylate kinase (PfTMK) is an essential enzyme for the growth of the organism because of its critical role in the de novo synthesis of deoxythymidine 5'-diphosphate (TDP), a precursor for TTP that is required for DNA replication and repair. The kinetics, thermodynamic parameters, and substrate binding properties of PfTMK for TMP, dGMP, ADP, and ATP were measured and characterized by steady-state kinetics and a combination of isothermal titration calorimetry, tryptophan fluorescence titration, and NMR. Mutational studies were performed to investigate residues that contribute to the unique ability of PfTMK to also utilize dGMP as a substrate. Isothermal titration calorimetry experiments revealed that dGMP binding exhibits a unique half-site binding mechanism. The occlusion of the empty site in the dGMP complex is supported by molecular mechanics calculations. Relaxation dispersion experiments show that the dGMP and enzyme complex is more dynamic at the dimer interface than the TMP complex on the µs-ms time scale. The unique properties of dGMP binding need to be considered in the design of guanosine-based PfTMK-specific inhibitors.


Assuntos
Nucleotídeos de Desoxiguanina/metabolismo , Núcleosídeo-Fosfato Quinase/metabolismo , Plasmodium falciparum/enzimologia , Sítios de Ligação , Cristalografia por Raios X , Nucleotídeos de Desoxiguanina/química , Dimerização , Cinética , Modelos Moleculares , Estrutura Molecular , Núcleosídeo-Fosfato Quinase/química , Núcleosídeo-Fosfato Quinase/isolamento & purificação , Plasmodium falciparum/metabolismo
10.
Talanta ; 205: 120120, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31450426

RESUMO

Nucleosides analogues are the cornerstone of the treatment of several human diseases. They are especially at the forefront of antiviral therapy. Their therapeutic efficiency depends on their capacity to be converted to the active nucleoside triphosphate form through successive phosphorylation steps catalyzed by nucleoside/nucleotide kinases. In this context, it is mandatory to develop a rapid, reliable and sensitive enzyme activity test to evaluate their metabolic pathways. In this study, we report a proof of concept to directly monitor on-line nucleotide multiple phosphorylation. The methodology was developed by on-line enzyme bioreactors hyphenated with High-Resolution Mass Spectrometry detection. Human Thymidylate Kinase (hTMPK) and human Nucleoside Diphosphate Kinase (hNDPK) were covalently immobilized on functionalized silica beads, and packed into micro-bioreactors (40 µL). By continuous infusion of substrate into the bioreactors, the conversion of thymidine monophosphate (dTMP) into its di- (dTDP) and tri-phosphorylated (dTTP) forms was visualized by monitoring their Extracted Ion Chromatogram (EIC) of their [M - H]- ions. Both bioreactors were found to be robust and durable over 60 days (storage at 4 °C in ammonium acetate buffer), after 20 uses and more than 750 min of reaction, making them suitable for routine analysis. Each on-line conversion step was shown rapid (<5 min), efficient (conversion efficiency > 55%), precise and repeatable (CV < 3% for run-to-run analysis). The feasibility of the on-line multi-step conversion from dTMP to dTTP was also proved. In the context of selective antiviral therapy, this proof of concept was then applied to the monitoring of specificity of conversion of two synthesized Acyclic Nucleosides Phosphonates (ANPs), regarding human Thymidylate Kinase (hTMPK) and vaccina virus Thymidylate Kinase (vvTMPK).


Assuntos
Reatores Biológicos , Enzimas Imobilizadas/química , Núcleosídeo-Fosfato Quinase/química , Organofosfonatos/química , Timidina Monofosfato/química , Nucleotídeos de Timina/química , Humanos , Espectrometria de Massas/métodos , Fosforilação , Estudo de Prova de Conceito , Vírus Vaccinia/enzimologia
11.
J Biol Chem ; 294(27): 10686-10697, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31152062

RESUMO

The yeast Candida albicans is the most prevalent opportunistic fungal pathogen in humans. Drug resistance among C. albicans isolates poses a common challenge, and overcoming this resistance represents an unmet need in managing this common pathogen. Here, we investigated CDC8, encoding thymidylate kinase (TMPK), as a potential drug target for the management of C. albicans infections. We found that the region spanning amino acids 106-123, namely the Ca-loop of C. albicans TMPK (CaTMPK), contributes to the hyperactivity of this enzyme compared with the human enzyme (hTMPK) and to the utilization of deoxyuridine monophosphate (dUMP)/deoxy-5-fluorouridine monophosphate (5-FdUMP) as a substrate. Notably, expression of CaTMPK, but not of hTMPK, produced dUTP/5-FdUTP-mediated DNA toxicity in budding yeast (Saccharomyces cerevisiae). CRISPR-mediated deletion of this Ca-loop in C. albicans revealed that the Ca-loop is critical for fungal growth and susceptibility to 5-fluorouridine (5-FUrd). Of note, pathogenic and drug-resistant C. albicans clones were similarly sensitive to 5-FUrd, and we also found that CaTMPK is essential for the growth of C. albicans In conclusion, these findings not only identified a target site for the development of CaTMPK-selective drugs, but also revealed that 5-FUrd may have potential utility as drug for managing C. albicans infections.


Assuntos
Candida albicans/enzimologia , Proteínas Fúngicas/química , Núcleosídeo-Fosfato Quinase/química , Pirimidinas/farmacologia , Sequência de Aminoácidos , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Edição de Genes , Humanos , Cinética , Testes de Sensibilidade Microbiana , Núcleosídeo-Fosfato Quinase/genética , Núcleosídeo-Fosfato Quinase/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Uridina/análogos & derivados , Uridina/farmacologia , Uridina Monofosfato/química , Uridina Monofosfato/metabolismo
12.
PLoS One ; 14(2): e0212065, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30730992

RESUMO

Plasmodium falciparum thymidylate kinase (PfTMK) showed structural and catalytic distinctions from the host enzyme rendering it a hopeful antiprotozoal drug target. Despite the comprehensive enzymologic, structural, inhibitory and chemical synthesis approaches targeting this enzyme, the elucidation of the exact mechanism underlying the recognition of the atypical purine substrates remains to be determined. In this study, molecular dynamics (MD) simulation of a broad range of substrates and inhibitors as well as the inhibitory properties of deoxyguanosine (dG) derivatives were used to assess the PfTMK substructure molecular rearrangements. The estimated changes during the favourable binding of high affinity substrate (TMP) include lower interaction with P-loop, free residue fluctuations of the lid domain and the average RMSD value. The RMSD of TMP complex was higher and more rapidly stabilized than the dGMP complex. The lid domain flexibility is severely affected by dGMP and ß-thymidine derivatives, while being partially fluctuating with other thymidine derivatives. The TMK-purine (dGMP) complex was slowly and gradually stabilized with lower over all structure flexibility and residue fluctuations especially at the lid domain, which closes the active site during its catalytic state. Thymidine derivatives allow structure flexibility of the lid domain being highly fluctuating in α- and ß-thymidine derivatives and TMP. dG derivatives remains less efficient than thymidine derivatives in inhibiting TMK. The variations in the structural dynamics of the P-loop and lid domain in response to TMP or dGMP might favour thymidine-based compounds. The provided MD simulation strategy can be used for predicating structural changes in PfTMK during lead optimization.


Assuntos
Simulação de Dinâmica Molecular , Núcleosídeo-Fosfato Quinase/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Sítios de Ligação , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Ligação de Hidrogênio , Ligantes , Núcleosídeo-Fosfato Quinase/antagonistas & inibidores , Núcleosídeo-Fosfato Quinase/química , Estrutura Terciária de Proteína , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Especificidade por Substrato
13.
Anal Chim Acta ; 1049: 115-122, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30612642

RESUMO

Nucleosides and their analogues play a crucial role in the treatment of several diseases including cancers and viral infections. Their therapeutic efficiency depends on their capacity to be converted to the active nucleoside triphosphates form through successive phosphorylation steps catalyzed by nucleoside/nucleotide kinases. It is thus mandatory to develop an easy, rapid, reliable and sensitive enzyme activity tests. In this study, we monitored the three-step phosphorylation of thymidine to thymidine triphosphate respectively by (1) human thymidine kinase 1 (hTK1), (2) human thymidylate kinase (hTMPK) and (3) human nucleoside diphosphate kinase (hNDPK). Free and immobilized kinase activities were characterized by using the Michaelis-Menten kinetic model. Flow Injection Analysis (FIA) with High-Resolution Mass Spectrometry (HRMS) was used as well as capillary electrophoresis (CE) with UV detection. The three-step cascade phosphorylation of thymidine was also monitored. FIA-HRMS allows a sensitive and rapid evaluation of the phosphorylation process. This study proposes simple, rapid, efficient and sensitive methods for enzyme kinetic studies and successive phosphorylation monitoring with immobilized enzymes.


Assuntos
Enzimas Imobilizadas/química , Núcleosídeo-Difosfato Quinase/química , Núcleosídeo-Fosfato Quinase/química , Timidina Quinase/química , Timidina/química , Análise de Injeção de Fluxo/métodos , Humanos , Cinética , Espectrometria de Massas/métodos , Nanopartículas/química , Fosforilação
14.
J Biomol Struct Dyn ; 37(17): 4569-4579, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30488769

RESUMO

Acknowledging the importance of studies toward the development of measures against terrorism and bioterrorism, this study aims to contribute to the design of new prototypes of potential drugs against smallpox. Based on a former study, nine synthetic feasible prototypes of selective inhibitors for thymidylate kinase from Variola virus (VarTMPK) were designed and submitted to molecular docking, molecular dynamics simulations and binding energy calculations. The compounds are simplifications of two more complex scaffolds, with a guanine connected to an amide or alcohol through a spacer containing ether and/or amide groups, formerly suggested as promising for the design of selective inhibitors of VarTMPK. Our study showed that, despite the structural simplifications, the compounds presented effective energy values in interactions with VarTMPK and HssTMPK and that the guanine could be replaced by a simpler imidazole ring linked to a -NH2 group, without compromising the affinity for VarTMPK. It was also observed that a positive charge in the imidazole ring is important for the selectivity toward VarTMPK and that an amide group in the spacer does not contribute to selectivity. Finally, prototype 3 was pointed as the most promising to be synthesized and experimentally evaluated. Communicated by Ramaswamy H. Sarma.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Núcleosídeo-Fosfato Quinase/antagonistas & inibidores , Varíola/tratamento farmacológico , Vírus da Varíola/enzimologia , Inibidores Enzimáticos/química , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Núcleosídeo-Fosfato Quinase/química , Termodinâmica
15.
Int J Biol Macromol ; 123: 637-647, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30447376

RESUMO

Several studies on enzyme catalysis have pointed out that the product release event could be a rate limiting step. In this study, we have compared the release event of two products, Adenosine di-phosphate (ADP) and Thymidine di-phosphate (TDP) from the active-site of human and Thermus thermophilus thymidine mono-phosphate kinase (TMPK), referred to as hTMPK and ttTMPK, respectively. TMPK catalyses the conversion of Thymidine mono-phosphate (TMP) to TDP using ATP as phosphoryl donor in the presence of Mg2+ ion. Most of the earlier studies on this enzyme have focused on understanding substrate binding and catalysis, but the critical product release event remains elusive. Competitive binding experiments of the substrates and the products using ttTMPK apo crystals have indicated that the substrate (TMP) can replace the bound product (TDP), even in the presence of an ADP molecule. Further, the existing random accelerated molecular dynamics (RAMD) simulation program was modified to study the release of both the products simultaneously from the active site. The RAMD simulations on product-bound structures of both ttTMPK and hTMPK, revealed that while several exit patterns of the products are permissible, the sequential exit mode is the most preferred pattern for both ttTMPK and hTMPK enzymes. Additionally, the product release from the hTMPK was found to be faster and more directional as compared to ttTMPK. Structural investigation revealed that the critical changes in the residue composition in the LID-region of ttTMPK and hTMPK have an effect on the product release and can be attributed to the observed differences during product release event. Understanding of these dissimilarities is of considerable utility in designing potent inhibitors or prodrugs that can distinguish between eukaryotic and prokaryotic homologues of thymidylate kinase.


Assuntos
Evolução Molecular , Núcleosídeo-Fosfato Quinase/química , Conformação Proteica , Thermus thermophilus/enzimologia , Difosfato de Adenosina/química , Catálise , Domínio Catalítico , Cristalografia por Raios X , Humanos , Magnésio/química , Simulação de Dinâmica Molecular , Núcleosídeo-Fosfato Quinase/metabolismo , Ligação Proteica , Especificidade por Substrato , Thermus thermophilus/química
16.
Acta Crystallogr D Struct Biol ; 74(Pt 4): 341-354, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29652261

RESUMO

Thymidylate kinase is an important enzyme in DNA synthesis. It catalyzes the conversion of thymidine monophosphate to thymidine diphosphate, with ATP as the preferred phosphoryl donor, in the presence of Mg2+. In this study, the dynamics of the active site and the communication paths between the substrates, ATP and TMP, are reported for thymidylate kinase from Thermus thermophilus. Conformational changes upon ligand binding and the path for communication between the substrates and the protein are important in understanding the catalytic mechanism of the enzyme. High-resolution X-ray crystal structures of thymidylate kinase in apo and ligand-bound states were solved. This is the first report of structures of binary and ternary complexes of thymidylate kinase with its natural substrates ATP and ATP-TMP, respectively. Distinct conformations of the active-site residues, the P-loop and the LID region observed in the apo and ligand-bound structures revealed that their concerted motion is required for the binding and proper positioning of the substrate TMP. Structural analyses provide an insight into the mode of substrate binding at the active site. The residues involved in communication between the substrates were identified through network analysis using molecular-dynamics simulations. The residues identified showed high sequence conservation across species. Biochemical analyses show that mutations of these residues either resulted in a loss of activity or affected the thermal stability of the protein. Further, molecular-dynamics analyses of mutants suggest that the proper positioning of TMP is important for catalysis. These data also provide an insight into the phosphoryl-transfer mechanism.


Assuntos
Domínio Catalítico , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Núcleosídeo-Fosfato Quinase/química , Trifosfato de Adenosina/metabolismo , Biocatálise , Ligantes , Ligação Proteica , Thermus thermophilus/enzimologia , Timidina Monofosfato/metabolismo
17.
Biochemistry ; 57(19): 2868-2875, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29684273

RESUMO

Plasmodium falciparum thymidylate kinase (PfTMK) is a critical enzyme in the de novo biosynthesis pathway of pyrimidine nucleotides. N-(5'-Deoxy-α-thymidin-5'-yl)- N'-[4-(2-chlorobenzyloxy)phenyl]urea was developed as an inhibitor of PfTMK and has been reported as an effective inhibitor of P. falciparum growth with an EC50 of 28 nM [Cui, H., et al. (2012) J. Med. Chem. 55, 10948-10957]. Using this compound as a scaffold, a number of derivatives were developed and, along with the original compound, were characterized in terms of their enzyme inhibition ( Ki) and binding affinity ( KD). Furthermore, the binding site of the synthesized compounds was investigated by a combination of mutagenesis and docking simulations. Although the reported compound is indicated to be highly effective in its inhibition of parasite growth, we observed significantly lower binding affinity and weaker inhibition of PfTMK than expected from the reported EC50. This suggests that significant structural optimization will be required for the use of this scaffold as an effective PfTMK inhibitor and that the inhibition of parasite growth is due to an off-target effect.


Assuntos
Inibidores Enzimáticos/farmacologia , Malária Falciparum/tratamento farmacológico , Núcleosídeo-Fosfato Quinase/antagonistas & inibidores , Timidina/química , Antimaláricos/química , Antimaláricos/farmacologia , Sítios de Ligação , Inibidores Enzimáticos/química , Humanos , Cinética , Malária Falciparum/parasitologia , Núcleosídeo-Fosfato Quinase/química , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Plasmodium falciparum/patogenicidade , Ligação Proteica , Especificidade por Substrato , Timidina/antagonistas & inibidores
18.
Biochemistry ; 56(33): 4360-4370, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28742342

RESUMO

The structure of thymidylate kinase from Candida albicans, determined by X-ray crystallography, is reported to a resolution of 2.45 Å with a final Rfree of 0.223. Thymidylate kinase from C. albicans possesses a unique 15-residue loop that is not seen in thymidylate kinases from other genera. The structure reported here reveals that the conformation of this loop is constrained by both intra- and intersubunit hydrogen bonding, and a number of key residues in this loop are conserved among different Candida species that are medically important. The substrate specificity of the enzyme was determined using a novel nuclear magnetic resonance-based assay as well as a traditional coupled assay. The enzyme is active against 3'-azido-3'-deoxythymidine monophosphate and moderately active with dGMP. The distinct functional and structural differences between the C. albicans enzyme and the human enzyme suggest that thymidylate kinase is an appropriate target for the development of new antifungal agents.


Assuntos
Candida albicans/enzimologia , Proteínas Fúngicas/química , Núcleosídeo-Fosfato Quinase/química , Candida albicans/genética , Cristalografia por Raios X , Proteínas Fúngicas/genética , Humanos , Núcleosídeo-Fosfato Quinase/genética , Domínios Proteicos , Especificidade da Espécie , Homologia Estrutural de Proteína
19.
FEBS J ; 284(15): 2527-2544, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28627020

RESUMO

Thymidylate kinase (TMK) is a key enzyme which plays an important role in DNA synthesis. It belongs to the family of nucleoside monophosphate kinases, several of which undergo structure-encoded conformational changes to perform their function. However, the absence of three-dimensional structures for all the different reaction intermediates of a single TMK homolog hinders a clear understanding of its functional mechanism. We herein report the different conformational states along the reaction coordinate of a hyperthermophilic TMK from Aquifex aeolicus, determined via X-ray diffraction and further validated through normal-mode studies. The analyses implicate an arginine residue in the Lid region in catalysis, which was confirmed through site-directed mutagenesis and subsequent enzyme assays on the wild-type protein and mutants. Furthermore, the enzyme was found to exhibit broad specificity toward phosphate group acceptor nucleotides. Our comprehensive analyses of the conformational landscape of TMK, together with associated biochemical experiments, provide insights into the mechanistic details of TMK-driven catalysis, for example, the order of substrate binding and the reaction mechanism for phosphate transfer. Such a study has utility in the design of potent inhibitors for these enzymes. DATABASE: Structural data are available in the PDB under the accession numbers 2PBR, 4S2E, 5H5B, 5XAI, 4S35, 5XB2, 5H56, 5XB3, 5H5K, 5XB5, and 5XBH.


Assuntos
Bactérias Termodúricas/enzimologia , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Núcleosídeo-Fosfato Quinase/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Ligantes , Mutagênese Sítio-Dirigida , Mutação , Núcleosídeo-Fosfato Quinase/química , Núcleosídeo-Fosfato Quinase/genética , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ribonucleotídeos/química , Ribonucleotídeos/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
20.
J Struct Biol ; 197(3): 236-249, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27940092

RESUMO

Thymidylate kinase (TMK) is a key enzyme that plays an important role in DNA synthesis. Therefore, it serves as an attractive therapeutic target for the development of antibacterial, antiparasitic and anticancer drugs. Herein, we report the biochemical characterization and crystal structure determination of thymidylate kinase from a hyperthermophilic organism Sulfolobus tokodaii (StTMK) in its apo and ADP-bound forms. Our study describes the first three-dimensional structure of an archaeal TMK. StTMK is a thermostable enzyme with optimum activity at 80°C. Despite the overall similarity to homologous TMKs, StTMK structures revealed several residue substitutions at the active site. However, enzyme assays demonstrated specificity to its natural substrates ATP and dTMP. Analysis of the structures also revealed multiple conformational states of Arg93 which is located at the reaction centre and is a part of the highly conserved DRX motif. Only one of these states was found to be suitable for the proper positioning of the α-phosphate group of dTMP at the active site. Computational alanine scanning and MM/PBSA binding energy calculation revealed the importance of Arg93 side chain in substrate binding. Subsequent site directed mutagenesis at this position to an Ala resulted in the loss of activity. Thus, the computational and biochemical studies reveal the importance of Arg93 for enzyme function, while the different conformational states of Arg93 observed in the structural studies imply its regulatory role in the catalytically competent placement of dTMP.


Assuntos
Archaea/enzimologia , Arginina/química , Arginina/metabolismo , Núcleosídeo-Fosfato Quinase/química , Núcleosídeo-Fosfato Quinase/metabolismo , Sulfolobus/enzimologia , Arginina/genética , Sítios de Ligação , Domínio Catalítico/genética , Domínio Catalítico/fisiologia , Simulação de Dinâmica Molecular , Núcleosídeo-Fosfato Quinase/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...